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SUMMARY

Numerical simulations of explosion and implosion in air are carried out with a modified Harten’s TVD
scheme. The new scheme has a high resolution for contact discontinuities in addition to maintaining the
good features of Harten’s TVD scheme. In the numerical experiment of spherical explosion in air, the
second shock wave (which does not exist in the one-dimensional shock tube problem) and its subsequent
implosion on the origin have been successfully captured. The positions of the main shock wave, the
contact discontinuity and the second shock wave have shown satisfactory agreement with those predicted
from previous analysis. The numerical results are also compared with those obtained experimentally.
Finally, simulations of a cylindrical explosion and implosion in air are carried out. Results of the
cylindrical implosion in air are compared with those of previous work, including the interaction of the
reflected main shock wave with the contact discontinuity and the formation of a second shock wave. All
these attest to the successful use of the modified Harten’s TVD scheme for the simulations of shock
waves arising from explosion and implosion. Copyright © 1999 John Wiley & Sons, Ltd.

KEY WORDS: TVD scheme; second shock wave; radially symmetric flow

1. INTRODUCTION

Theoretical and experimental studies of spherical blast waves have been considered over the
past decades by several researchers (Boyer [1], Brode [2], Friedman [3], Glass [4], Bake [5]).
When a highly pressurized sphere is suddenly released, an inward rarefaction wave in the
high-pressure region is generated. At the same time, a main shock wave moves out through the
low-pressure region and a contact discontinuity appears between the rarefaction wave and the
shock wave. Furthermore, experiments [1,4] have shown that the resulting flow for this
problem is quite complex and a second shock wave can arise between the contact discontinuity
and the rarefaction wave.

The formation of the second shock wave as deduced from the results of the analysis by
Boyer [1] and Friedman [3] can be summarized as follows. The high-pressure gas, through a
spherical rarefaction wave, must expand to a lower pressure than that reached by an equivalent
one-dimensional expansion. Unlike a one-dimensional shock tube problem, no steady state
region exists between the tail of the rarefaction wave and the main shock wave because of the
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flow three-dimensionality. The pressure immediately behind the main shock front decreases
with time, resulting in the generation of expansion waves that are able to overtake the main
shock front and cause it to attenuate. With the decrease of strength of the main shock wave,
the velocity immediately behind the main shock wave decreases. This implies that at the earlier
time of the explosion, the maximum velocity is at the tail of the rarefaction wave; at the same
time, the minima pressure and density also occur there. It is at the position of maximum
velocity, which is located at the tail of rarefaction wave, that the flow evolves into a
discontinuity—the second shock wave. For more details, the reader may want to refer to the
original references [1,3].

Because the second shock wave occurs in the expanding region, it is expected to be rather
weak initially and propagate outwards with the expanding gas. However, its strength increases
with time and reaches a fairly high intensity in a short time. Soon, the second shock wave stops
propagating outwards and comes to a halt before reverting backwards to implode on the
origin.

The contact discontinuity initially moves out behind the main shock front but with a
decreasing velocity. After a certain time, the contact discontinuity, following the moving-in
flow as induced by the converging second shock wave, ceases its outward motion and begins
to move in towards the origin. After its implosion at the center, the second shock wave moves
out and interacts with the incoming contact discontinuity; then it propagates through the
contact surface. The interaction causes the contact discontinuity to move slightly outwards in
the radial direction again. At the same time, an inward rarefaction wave is ‘generated’ at the
point of interaction. According to analysis [1,3], following this inward rarefaction wave there
is a third shock wave, albeit a weak one, as the situation is very similar to that required for
the formation of the second shock wave. Experiments [1,4], however, did not reveal the
presence of the third shock wave mentioned above. This can possibly be attributed to the third
shock wave being relatively much weaker and occurring so late that it is extremely difficult to
detect it. In fact, the existing discontinuities in the flow are weak and the whole flow region is
nearly uniform before the arrival of the third shock wave.

Some numerical experiments have also been carried out for this kind of explosion problem.
In 1981, Flores and Holt [6] employed Glimm’s scheme to compute the explosion generated by
a pressurized sphere in water. It was found [7], however, that there are difficulties associated
with the use of Glimm’s scheme to compute the rarefaction region near to the explosion center
after the rarefaction wave has reached the origin. This could be one reason why the
computation was not carried out long enough for the rarefaction wave to reach the explosion
center, as in Flores and Holt’s work. In another study, Charrier and Tessieras [8] numerically
simulated a cylindrical explosion in air by using a front-tracking technique. However, they did
not show the presence of the second shock wave as the computation was again not performed
for a sufficiently long time.

In a more recent development, Falcovitz and Birman [9] employed the GRP/ST method,
which is a variant of the singularities tracking GRP method developed earlier by Ben-Artzi and
Falcovitz [10], and studied its tracking properties of both strong and weak discontinuities as
applied to the simplified one-dimensional compressible duct flow. Indeed, there was good
agreement of results. On the other hand, because the GRP/ST method involves the use of an
extra moving grid system to track the discontinuities and a cell-merging/cell-splitting mecha-
nism is employed to circumvent the formation of free small cells that invariably result in
extremely small time step sizes, the method is rather complex, and extension to multi-
dimensional flows can be very computer intensive. The availability of the simpler high-order
TVD or ENO schemes, which are well-established, robust and capable of fine resolution of
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shock capturing as discussed below, is the preferred method for the present simulation of an
explosion/implosion in air. The extension to simulation of multi-dimensional/multi-medium
flow, as in an underwater explosion in future work is also greatly facilitated.

There are very few satisfactory experiments for the implosion problem. Because it is
extremely difficult to break a spherical diaphragm instantaneously, experiments by Boyer [1]
and Glass [4] failed to show the essence of a spherical implosion, such as the implosion of the
main shock wave and the interaction of the reflected main shock wave with the contact
discontinuity. However, numerical simulations by Sod [11] for this kind of problem showed
that a main shock wave moves inwards with increasing strength, imploding on the origin and
being reflected from it. After that, the main shock wave interacts with the radially incoming
contact discontinuity, resulting in the propagation and further reflection of the main shock,
hence creating a moving-in second shock wave.

The high-resolution TVD [12] and ENO [13,14] schemes developed by Harten and co-
workers have been extensively used to deal with the Euler and Navier–Stokes equations.
Numerical experiments have shown that these schemes are reasonably robust. On the other
hand, the direct application of the TVD or ENO schemes to compressible flow problems may
result in the ‘smearing’ of the contact discontinuities at a rate O(n1/(p+1)) [15], where p is the
order of accuracy of the scheme used and n is the number of the time steps. To overcome this
problem, Harten introduced the concept of subcell resolution and proposed a method named
ENO/SR [16]. Subsequently, Mao [17] introduced a discontinuity capturing technique by
merging with Harten’s subcell resolution to ‘sharpen’ the contact discontinuity. Both Harten’s
ENO/SR and Mao’s methods perform extremely well for one-dimensional planar flows.
Attempts to extend the ENO/SR method to higher dimensions using operator splitting were,
however, not so successful [14]. Thus far, a multi-dimensional version of ENO/SR has yet to
be developed. In another parallel effort, Yang [18] combined the ENO scheme with a slope
modification technique, which is an artificial compression method (ACM) type technique
pioneered by Harten [19], to increase the resolution of contact discontinuities. Yang’s method
is simple enough but some adjustable parameters inherent in his method have to be determined
with numerical experiments. In general, it can be reckoned that a scheme coupled with the
judicious use of an ACM technique will largely increase the resolution in the region near to the
contact discontinuity and yet will not change the properties and attributes of the original
scheme. The indiscriminate use of artificial compression throughout may distort the solution in
smooth regions [19]. Therefore, the ACM technique can enhance and benefit the overall
numerical computation if its application is restricted to the immediate region of the contact
discontinuity. Partly based on this motivation, a version of Harten’s TVD scheme, which is
coupled to the ACM technique for application to the contact discontinuity, is adopted in this
work. The authors seek to use this modified Harten’s TVD scheme to simulate both explosion
and implosion problems in air. The physical phenomena of the second shock wave in a
spherical explosion predicted analytically [2] and observed experimentally [1,4] will be carefully
compared with the computed results. Furthermore, the case of cylindrical explosion in air is
simulated under the same initial conditions as the spherical explosion, and the associated
discontinuity curves for both spherical and cylindrical explosions are discussed. For the
implosion problem, the results of the shock wave imploding at the origin, and the propagation
and reflection at the contact discontinuity, are compared with previous numerical work that
employed other numerical schemes. The present study will serve as an important starting point
for future work in the simulation of an underwater explosion, where data, whether experimen-
tal or theoretical, are even more limited for the purpose of comparison. Extension to
multi-dimensional flow for the study of an underwater explosion in the presence of a nearby
free-surface is the ultimate objective.
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This paper is organized as follows. In Section 2, the Euler equations for a one-dimensional,
radially symmetric inviscid flow are described and the system of equations at the origin is
presented. In Section 3, a modified Harten’s TVD scheme is constructed and the numerical
method used to handle the singularity at the origin is discussed. In Section 4, the modified
Harten’s TVD scheme is applied to track the evolution of a spherical explosion and its
numerical results are compared with previous work. Also in Section 4, computations of the
cylindrical explosion and implosion are carried out and discussed. A concluding summary is
given in Section 5.

2. THE GOVERNING EQUATIONS

The one-dimensional equations of motion for an inviscid, non-heat conducting, radially
symmetric flow are usually written in the form
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Equations (2.1) and (2.2) are in non-dimensional form (details of the non-dimensionalization
are given in Section 4). The independent variables are time (t) and radial distance from the
center of the explosion (r). The dependent dimensionless variables are density (r), radial
velocity (u), pressure (p) and total energy per unit volume (E). In Equation (2.2), a=2 for
cylindrical flow and 3 for spherical flow. For closure of Equation (2.1), the state equation of
a perfect gas is used and given as

E=
p

g−1
+

1
2

ru2, (2.3)

where g is the ratio of specific heats, equal to 1.4 for air. Equation (2.1) can also be rewritten
in another conservative form,
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One may observe that the right-hand-side term of Equation (2.4) is always positive. Numerical
experiments have indicated that a positive right-hand-side term tends to enhance numerical
stability. Furthermore, due to the continuity of S(U0 ) through the material contact surface,
Equation (2.4) is the preferred form for the simulation of multi-fluid flow.
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There is a potential problem in solving Equations (2.1) or (2.4) directly due to the singularity
at r=0; this singularity can be removed. The following form of the conservative equations is
adopted to ensure that the resulting finite difference numerical scheme employed is compatible
with the original PDE at the origin. At the origin,
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=0, (2.6a)
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=0 (2.6b)

and

u=0. (2.6c)

3. A MODIFIED TVD SCHEME: NUMERICAL IMPLEMENTATION

A high-order TVD or ENO scheme possesses rather unique features, such as high-resolution
for shock capturing without oscillations, and is commonly used for the simulation of
compressible flow. To further enhance the resolution of the contact discontinuity and ensure
the stability of computations for a long period of time, the authors propose the use of a
modified Harten’s TVD scheme with the incorporation of the ACM technique for the
immediate region of the contact discontinuity. The form of the new scheme for Equation (2.4)
is
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Here, n and j are the indices of the time and radial distances respectively; jr=Dt/Dr, where Dt
and Dr are the time and spatial step sizes respectively; Rj+1/2, Rj+1/2

−1 and l j+1/2
l are the right

eigenvectors, the left eigenvectors and the eigenvalues of the matrix (F/(U respectively; and
l1=u. For the computation, the following CFL condition is adopted:

Dt
Dr
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which is set to 0.8 in the present work, with o=0.2.
One may observe that the scheme presented above is very similar to Harten’s TVD scheme

for Equation (2.4) except for the expression in Equation (3.1d), where qj+1/2
l , is set equal to

zero for the latter. The construction of qj+1/2
l is based on Harten’s ACM techniques [12,15,19]

with the following general fact: the two non-linear eigenvalues, l2 and l3, exhibit opposite
trends across the contact discontinuity along the radial direction, i.e. if one increases, the other
must decrease across the contact discontinuity. This is unlike the respective changes across the
shock or rarefaction wave region, where both eigenvalues either decrease or increase along the
radial direction. It is believed that the opposite trends for l2 and l3 across the contact
discontinuity give rise to a relati6ely larger amount of numerical viscosity in the affected region
as compared with other regions, and this can lead to ‘smearing’ of the contact discontinuity.
To decrease the inordinate increase of the said numerical viscosity, Sj+1/2 given in Equation
(3.1g) is first evaluated to detect the presence of the contact discontinuity and the ACM
technique is then applied directly on the affected region to ensure a ‘sharp’ contact discontinu-
ity. The ACM technique is simple and involves only marginally more computation.

For a system of linear Euler equations, Harten [12] had earlier shown that Harten’s TVD
scheme is generally both conservative and second-order. In a similar fashion, the present
modified Harten’s scheme can be shown to possess the above mentioned properties, which are
provided in Appendix A. Furthermore, the present scheme is considered to be TVD under the
CFL condition Dt/Dr max(�u �+c)5 ((5−
17)/2). The CFL condition presented here is more
severe than Harten’s TVD scheme. Numerical tests, however, show that the total variation
(TV) is bounded and essentially oscillation-free under the less restrictive CFL50.95. In the
numerical implementation, for the purpose of expediency, a larger time step according to
CFL=0.8 was used and checks were periodically made according to the stricter CFL
condition, with differences in the results of only about 3%. Furthermore, since there is no
entropy consideration for a linearly degenerate field—the contact discontinuity [12]—the
entropy property of the original Harten’s TVD scheme is maintained.

The governing equations valid at the origin as reflected in Equation (2.6) are discretized as
follows:
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p0
n+1= (g−1)E0

n+1, (3.3c)

u0
n+1=0. (3.3d)

Here, ‘1’ and ‘2’ indicate that the variables are evaluated at the respective grid points r1=Dr
and r2=2Dr, and ‘0’ refers to the variable taken at the origin.

Figure 1(a) and (b) show the density profiles, computed with the standard Harten’s TVD
and the present scheme respectively, for a shock tube problem with the same initial conditions
of pH=4.0, rH=4.0, uH=0.0, pL=1.0, rL=1.0 and uL=0.0. If the two density profiles are
plotted in one figure, the two curves will fully coincide except at the contact discontinuity
region, where the grid points are reduced from eight nodal points for Harten’s TVD scheme
to three nodal points for the present scheme. Both schemes employed the same number of total
nodal points for representation and a constant Dx=0.01 throughout. The resolution of the
contact discontinuity has improved while other regions remain unaffected. This also shows that
the ACM technique affects only the locality of the contact discontinuity region, as was
intended in this shock tube problem. In the next section, the contact discontinuity is always
exhibited as a fairly sharp interface, which is computed as an unsteady problem for a long
period of time.

4. RESULTS AND DISCUSSIONS

4.1. Numerical simulation of explosion in air

For purposes of comparison, the authors use the test model that has been analyzed by Brode
[2] and investigated experimentally by Boyer [1]. A sphere with initial radius r %0=2 in.,
containing the compressed air at pressure p %H=326 psi and at a temperature T %0=299 K, is
assumed to be surrounded by air at pressure p %0=15 psi and the same temperature. The
symbol prime (%) denotes dimensional quantity. In this case, the dependent variables are
non-dimensionalized via r=r %/r %0, p=p %/r %0a % 20 and u=u %/a %0. Here, a %0 is the sonic speed and
is given by a %20=g(p %0/r %0). The physical independent variables, t % and r %, are made non-dimen-
sional using 4r %0/a %0 and 4r %0 respectively. Hence, the relationship between the physical time t %
and the non-dimensional time t is t %=293t (ms), and the non-dimensional initial parameters are
pH=15.514, rH=21.7333, uH=0, p0=0.715, r0=1.0 and u0=0.

In Figure 2(a)–(c) the pressure profiles at different physical times are shown. In Figure 2(a)
the second shock front can only be discerned from the pressure profiles at about t %=120 ms.
At an earlier time of 85 ms, the shock can be detected from the temperature profiles at the
non-dimensional radial position of about 0.42 (see Figure 3(a)–(c) for the plots of the
temperature profiles). Detecting the presence of the second shock wave numerically is not so
distinct and easy before 85 ms. This is because the second shock wave before that time is rather
weak. Therefore, its exact position will be obtained based on the more objective criterion of the
position of minimum pressure or temperature near the tail region of the rarefaction wave. The
basis of this criterion stems from the fact that, at early times, the second shock wave occurs
at the tail of the rarefaction wave, where the minima of pressure and temperature are located.
In Figure 2(a), at about 60 ms, the rarefaction wave reaches the origin and results in a rapid
decrease of pressure; in another 80 ms time period (i.e. at t %=140 ms), the pressure at the origin
would be lower than that at the tail of the rarefaction wave. From that moment of about
t %=140 ms till the time when the second shock wave arrives at the center, the pressure, density
and temperature between the origin and the second shock wave are constant along the radial
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Figure 1. (a) The density profile obtained with Harten’s TVD scheme for the shock tube problem; (b) the density
profile obtained with the modified Harten’s TVD scheme for the shock tube problem.
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direction, but they keep decreasing continuously with time (see Figures 2(b) and 3(b)). It may
also be noted that after t %=140 ms (i.e. when the pressure at the origin is lower than that at
the tail of the rarefaction wave), the second shock ceases its previous outward motion and
starts to move inwards, with increasing strength, and finally converges at the center. The

Figure 2. (a)–(c) The pressure profiles for a spherical explosion centered at the origin.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 661–680 (1999)



T.G. LIU ET AL.670

Figure 2 (Continued)

implosion of the second shock wave causes a sharp increase of density, pressure and
temperature near the explosion center. This occurs at about t %=360 ms. Probably because of
numerical viscosity the maximum pressure is less than that of the initial state, unlike the result

Figure 3. (a)–(c) The temperature profiles for the spherical explosion centered at the origin.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 661–680 (1999)
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Figure 3 (Continued)

of theoretical analysis, which predicts the pressure there could reach infinity for inviscid flow.
In Figure 2(c), the pressure at the explosion center decreases again with the radial divergence
of the reflected second shock wave.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 661–680 (1999)
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The temperature profiles are shown in Figure 3(a)–(c). There is an interesting phenomenon
about the position of the maximum temperature. After an explosion, the maximum tempera-
ture remains at the contact discontinuity till about 100 ms. Beyond that time, the temperature
immediately behind the main shock is the largest (see Figure 3(a)). However, the temperature
immediately behind the second shock wave rises rapidly and soon takes on the maximum value
due to the convergence of the second shock wave at the center (see Figure 3(b)). At t %=360
ms, the second shock wave implodes, resulting in maximum temperature at the origin. Even
after the reflected second shock wave propagates radially outwards through the contact
discontinuity, the temperature at the center still maintains its maximum value. It probably
remains so until the whole flow region becomes uniform. This can be seen in Figure 3(c).

The curves of the discontinuities and their comparison with the results analyzed by Brode [2]
are shown in Figure 4(a). From the evolution of the second shock, it can be seen that the latter
initially moves away from the origin. At t %=170 ms, the second shock wave ceases its outward
motion and begins to move back, and then it implodes on the origin at 360 ms. Because of the
inward motion of the second shock wave, the flow behind the second shock wave moves back
to the origin, and this results in the contact discontinuity ceasing its outward motion and
beginning to move inwards at 240 ms. At about 550 ms, the incoming contact surface meets
with the out-going reflected second shock wave and interacts with it, resulting in the slight
outward motion of the contact discontinuity and the transmission of the second shock wave.
After the second shock is transmitted through the contact discontinuity, the contact disconti-
nuity seems to stay relatively still at the same position. The authors did not obtain the
reflection of the second shock at the contact discontinuity surface, probably because the
reflection is very weak. In Figure 4(a), the curves marked with open symbols are the analytical
ones presented by Brode [2]. The present numerical results certainly show fairly good
agreement with those predicted analytically with a maximum deviation limited to less than
about 5%.

In Figure 4(b), the present results are compared with those obtained experimentally by
Boyer [1]. Except at the initial stage of the explosion, where there is fair agreement of results
with the maximum difference limited to less than 13%, the respective results indicate increasing
divergence, although it must be stated that both sets of results still exhibit similar trends.
Though there are several difficulties associated with the experiment, such as accurate measure-
ments and the need to initiate the ‘explosion’ as symmetrically as possible, the experiment
nevertheless clearly demonstrated the main features of the explosion, like the presence and
implosion of the second shock wave. The possible comparison is significant in that such an
experiment is rather uncommon and data are not always available in the open literature. From
Figure 4(b), it is observed that the time of implosion of the second shock wave at the center
occurred later than that obtained numerically; the difference is about 180 ms (i.e. 50%) and the
contact discontinuity in the experiment did not indicate any radially inward movement before
its interaction with the reflected second shock wave. Closer examination of the shadowgraphs
from which the experimental data were deduced reveals three possible causes for the discrepan-
cies observed. One, the thin spherical glassy diaphragm may not have broken instantaneously
and, as a result, the flow is not completely spherically symmetric. This asymmetry can
contribute to the time delay of implosion of the second shock wave at the center. Besides,
difficulties also arise in determining the exact moment at which the second shock front
implodes at the center since it is not entirely spherical in shape. The second possible cause is
the issue of energy loss in the flow system due to the moving fragments of glass diaphragm.
Although the kinetic energy loss can be partly mitigated by equivalently increasing the pressure
in the sphere, the loss due to the thermal energy residing in each fragment is not considered.
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Figure 4. (a) Comparison of the discontinuity systems with the analysis by Brode [2] for the spherical explosion; (b)
comparison of the discontinuity systems with the experiments by Boyer [1] for the spherical explosion.
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Lastly, the fragments are made of much denser material compared with the surrounding
gaseous medium and have much greater inertia; the effect of the slower moving fragments in
the flow and across the contact discontinuity may greatly contribute to the asymmetry of the
flow.

A cylindrical explosion in air has also been carried out under the same initial conditions as
that for the spherical explosion. The numerical simulation shows that the cylindrical explosion
shares similar physical attributes as those of the spherical explosion. However, the strength of
the second shock in the cylindrical explosion is less than that in the spherical explosion, and
its implosion on the origin occurs later than that in the spherical explosion by about 250 ms.
Figure 5 summarizes the curves of discontinuities for both the cylindrical and spherical
explosions. From Figure 5, the interaction of the second shock wave and contact discontinuity
also occurs much later for the cylindrical explosion. It may also be noted that the strength of
the main cylindrical shock wave is lower than that of the spherical explosion.

4.2. The numerical simulation of cylindrical implosion

The computation of a cylindrical implosion generated by simultaneously breaking a cylindri-
cal diaphragm, which separates an outer high pressure gas region from an inner low pressure
gas cylinder, was carried out by several researchers like Sod [11], Abarbanel and Goldberg [20],
Lapidus [21] and Payne [22]. For the sake of further comparison with the computation based
on the modified TVD scheme, the present authors shall choose the same model as Sod [11].
The initial non-dimensional conditions are pH=4.0, rH=4.0, uH=0, p0=1.0, r0=1.0 and
u0=0, and the diaphragm is located at 0.25.

Figure 5. Comparison of the discontinuity systems between a spherical and cylindrical explosions centered at the
origin.
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When the diaphragm is suddenly broken, there is an inward converging shock wave (called
the main shock wave) in the low pressure region, a rarefaction wave moving out into the high
pressure region with a moving-in contact discontinuity separating the rarefaction wave and the
main shock wave. In Figure 6(a), the pressure profiles at five stages are displayed. This figure

Figure 6. (a) The pressure profiles for a cylindrical implosion centered at the origin; (b) the velocity profiles for the
cylindrical implosion centered at the origin; (c) the density profiles for the cylindrical implosion centered at the origin.
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Figure 6 (Continued)

shows that the shock wave with increasing strength converges on the origin at about t=0.15,
which is in good agreement with that computed by Sod [11]. Because of the implosion, the
pressure increases rapidly to a large but finite value. The temperature and density at the center
also attain their maximum values at the same time. After its implosion, the main shock wave
is reflected outwards and results in a decrease of pressure. The out-going main shock wave,
after a certain time period, begins to interact with the incoming contact discontinuity front,
thereby causing the contact discontinuity to remain stationary in space (see below for more
details). In the meantime, part of the main shock front is transmitted and the other portion is
reflected at the contact discontinuity. The pressure plot in Figure 6(a) at t=0.2896 indicates
a reflected shock (which is called the second shock wave), albeit a relatively weak one, at the
position of about r=0.05. At t=0.32, the moving-in second shock wave converges at the
center and causes the pressure there to increase again.

In Figure 6(b), the velocity plot is shown for the same time histories as in Figure 6(a). The
trend is rather similar to that of the pressure plot. Behind the converging main shock front, the
velocity assumes a negative value (i.e. moving radially inwards) and shows a rapid increase in
magnitude with time. After its implosion at the center, the main shock wave diverges radially
out and results in a decreasing positive velocity behind it. Due to the reflection of the main
shock wave at the contact discontinuity (at t=0.2896), a moving-in second shock appears in
the velocity profile and the associated velocity behind it is negative.

The density profiles displayed in Figure 6(c) exhibit evolution of the contact discontinuity.
It shows the same characteristic trends for the main and second shock waves as those displayed
in the pressure and velocity profiles. The contact discontinuity first moves inwards and
subsequently ceases its inward motion due to the impingement of the reflected main shock

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 661–680 (1999)



SIMULATION OF EXPLOSION AND IMPLOSION IN AIR 677

Figure 7. Comparison of the discontinuity systems for the cylindrical implosion centered at the origin.

wave, and finally stays more or less at rest. It can be further observed from Figure 6(c) that
the magnitude of density immediately behind the contact discontinuity front increases contin-
uously with time until the reflected main shock wave meets the contact discontinuity. At
t=0.2896, the reflected main shock wave has been transmitted through the contact discontinu-
ity and diverges out with decreasing strength. It can also be observed that the contact
discontinuity is always sharp.

The portion of contact discontinuities in the cylindrical implosion and their comparison with
the results computed by Sod [11] are shown in Figure 7. From this figure, the initially
moving-in main shock front converges at the center at t=0.15 and is reflected; then the
out-going reflected main shock meets the converging contact discontinuity at t=0.22, resulting
in its transmission through the contact discontinuity front and the generation of the second
shock wave. Due to the interaction of the main shock front with the contact discontinuity, the
latter ceases its inward motion and moves slightly outwards and, finally, stays at rest. The
inward-moving second shock front converges at the center at t=0.32 and is reflected. In
Figure 7, the open symbols, which pertain to the main shock front and contact discontinuity,
were obtained by Sod [11] using Glimm’s scheme; the second shock wave computed with
Glimm’s scheme is not shown as there are insufficient data as deduced from the paper [11]. The
current results show fair agreement with those computed by Sod except for the slight
divergence of the position of the main shock after its reflection at the center. It may be noted
that Glimm’s scheme is strictly first-order-accurate and Sod did not attempt to compare his
results with other data, whether experimental or otherwise, to establish accuracy. Overall, the
maximum deviation between the results is limited to less than 10% (in terms of magnitude) and
the trends obtained are in full agreement. This comparison with Sod’s work is also significant
in that the latter is based on the completely different Glimm’s scheme.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 661–680 (1999)



T.G. LIU ET AL.678

The results in Figure 6(a)–(c) indicate that both the main and second shock waves and
contact discontinuity are captured successfully with the modified TVD scheme. This is
especially significant since the second shock wave was not clearly captured by the previous
works of Abarbanel and Goldberg [20], Lapidus [21] and Payne [22]. Furthermore, in the
current results, the contact discontinuity remains highly resolved, unlike that produced by
Payne’s method, which was quite smeared out.

Finally, the mechanism for the generation of the second shock wave in the cylindrical
implosion problem should theoretically be the same as that for the generation of the third
shock wave as discussed in the previous section. The current scheme is not able to indicate
clearly the presence of the third shock wave; the previous works [20–22] did not show its
presence not to mention the occurrence of the second shock. One reason is that the third shock
is physically so weak and occurs so late that it is extremely difficult for a numerical scheme to
detect. Another factor could be the modified TVD scheme may still not be sufficiently sensitive
to capture this very weak third shock front. (Harten’s TVD scheme is also unable to capture
the third shock front, not shown.) On the other hand, the present method has clearly
demonstrated many useful features in capturing faithfully the second shock front and highly
resolving the contact discontinuity.

5. CONCLUSION

In this paper, the numerical study of the explosion generated by a pressurized air sphere or
cylinder is carried out using the modified Harten’s TVD scheme, which incorporates the ACM
technique for application to the contact discontinuity region. The second shock wave and its
subsequent implosion on the origin are captured, and the curves of the discontinuities have
shown good agreement with those predicted analytically. There is also fair concurrence of
results with experiments especially at early times; although there are larger discrepancies
observed for the various quantities at later times, the trends obtained are identical. A
cylindrical explosion under the same initial conditions as for spherical explosion is also carried
out and the differences between the spherical explosion and the cylindrical explosion are
analyzed and discussed.

Using the same modified TVD scheme, the numerical simulation for a cylindrical implosion
problem has also been performed. All the primary features of the implosion are obtained and
the results are discussed and compared with those obtained using Glimm’s scheme.

Overall, the modified Harten’s TVD scheme used is able to obtain the high resolution of the
contact discontinuity and enables the main and second shock fronts to be successfully captured
for an explosion or implosion problem.

APPENDIX A

Because the term gj
l= (1+qj+1/2

l )gj
H,l can be regarded as one order higher than gj

H,l used in the
original Harten’s TVD scheme [12], the former satisfies the condition put forth as Lemma 3.2
in the original Harten paper [12]. Furthermore, Hj=1/2

n in Equation (3.1a) is a second-order
approximation of the numerical flux of the second-order Lax–Wendorff scheme. Therefore,
the overall numerical scheme (3.1) is second-order-accurate and conservative. As for the TVD
feature of scheme (3.1), it shall be analyzed for the linear Euler equation system as similarly
carried out in Harten’s paper [12]. Recall that a scalar conservative scheme can be rewritten as
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Uj
n+1=Uj

n+C+ , j+1/2Dj+1/2U−C− , j−1/2Dj−1/2U, (A.1)

and scheme (A.1) will be TVD if C9 ,j+1/2]0 and C+ ,j+1/2+C− ,j+1/251. Since a linear
Euler equation system can be uncoupled into several scalar equations and C9 ,j+ l/2

l is obviously
not negative for the present scheme (3.1), there is need only to show that

C+ j+1/2
l +C− j+1/2

l 51

is satisfied. The term C9 ,j+1/2
l takes on the same definition as in Harten’s paper [12]. The

authors shall start from the expression

C+ , j+1/2
l +C− , j+1/2

l =8(n j+1/2
l +r j+1/2

l ). (A.2)

From the right-hand-side of Equation (A.2)

�r j+1/2
l �= �gj+1

l −gj
l�

�a j+1/2
l � 5

max(�gj+1
l �, �gj

l�)
�a j+1/2

l � 5 (1+qj+1/2
l )s(n j+1/2

l ), (A.3)

where n j+ i/2
l =jrl j+1/2

l and

qj+1/2
l =Sj+1/2×

�a j+1/2
l −a j−1/2

l �
�a j+1/2

l �+ �a j−1/2
l �×

8(n j+1/2
l )

s(n j+1/2
l )

5
8(n j+1/2

l )
s(n j+1/2

l )
,

therefore

8(n j+1/2
l +r j+1/2

l )5 �n j+1/2
l �+ �r j+1/2

l �5 �n j+1/2
l �+s(n j+1/2

l )+8(n j+1/2
l ), (A.4)

i.e.

8(n j+1/2
l +r j+1/2

l )5
5
2

�n j+1/2
l �−1

2
�n j+1/2

l �2. (A.5)

If 5
2�n j+1/2

l �−1
2�n j+1/2

l �251, then we have C+ ,j+ l/2
l +C− ,j+ l/2

l 51. This is only true when �n j+ l/2
l �

is less than or equal to (5−
17)/2.
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